Symbolic Defect of Monomial Ideals

Benjamin R. Oltsik

University of Connecticut ∠ benjamin.oltsik@uconn.edu

Background

Definition. Let R be commutative Noetherian, and let I be an ideal of R. The *n*-th symbolic power of I, denoted $I^{(n)}$, is

$$I^{(n)} = \bigcap_{\mathfrak{p} \in \operatorname{Ass}(I)} I^n R_{\mathfrak{p}} \cap R.$$

Two important properties:

1. $I^n \subseteq I^{(n)}$ for all n

2. Symbolic powers form a graded family of ideals

The Rees algebra $\mathcal{R}(I) = \bigoplus_{n=0}^{\infty} I^n t^n$ is Noetherian, but the Symbolic Rees algebra $\mathcal{R}_s(I) =$ $\bigoplus_{n=0}^{\infty} I^{(n)} t^n$ may not be.

Assume R is local (resp. graded) with unique maximal (resp. irrelevant) ideal \mathfrak{m} . The analytic spread and the symbolic analytic spread of I are

$$\ell(I) = \dim \left(\mathcal{R}(I) / \mathfrak{m} \mathcal{R}(I) \right)$$
 and $s\ell(I) = \dim \left(\mathcal{R}_s(I) / \mathfrak{m} \mathcal{R}_s(I) \right)$

Letting $\mu(M)$ denote the minimal number of generators of an *R*-module *M*. We also obtain that $\ell(I)$ and $s\ell(I)$ are one more than the growth rate of the functions, $n \mapsto \mu(I^n)$ and $n \mapsto \mu(I^{(n)})$, respectively. **Definition** (Galetto-Geramita-Shin-Van Tuyl, 2019). The symbolic defect function of an ideal I is the numerical function

$$\operatorname{sdef}_I : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}, \quad \operatorname{sdef}_I(n) := \mu \left(I^{(n)} / I^n \right) = \dim_K \left(\frac{I^{(n)}}{I^n + \mathfrak{m}I^{(n)}} \right).$$

The symbolic defect acts as a measurement of "closeness" between I^n and $I^{(n)}$. A result from Drabkin states the following:

Theorem (Drabkin 2020). Let $I \subseteq R$ be a homogeneous ideal of a Noetherian graded ring with Noetherian symbolic Rees algebra. Then sdef_I(n) is eventually quasi-polynomial for $n \gg 0$, with quasi-period $lcm(d_1,\ldots,d_s)$, where d_1,\ldots,d_s are the degrees of the generators of $\mathcal{R}_s(I)$ as an *R*-algebra.

Symbolic Powers and Monomial Ideals

Let $R = K[x_1, \ldots, x_r]$, I a monomial ideal. Some nice results are known for monomial ideals: 1. If r = 2, then $I^n = I^{(n)}$ for all n.

2. If I is associated to the maximal ideal, then $I^n = I^{(n)}$ for all n.

3. The symbolic Rees algebra is Noetherian.

With Drabkin's theorem, we can conclude that $sdef_I(n)$ is eventually quasi-polynomial.

We also have a formulation to calculate symbolic powers:

Lemma 1 (Herzog-Hibi-Viêt Trung, 2007). Let I be a monomial ideal in $K[x_1, \ldots, x_r]$ with monomial primary decomposition, $I = Q_1 \cap \cdots \cap Q_s$. Set max(I) to be the set of maximal associated primes, and, for each $\mathfrak{p} \in \max(I)$, let $Q_{\subset \mathfrak{p}} = \bigcap Q_i$. Then, $\sqrt{Q_i \subseteq \mathfrak{p}}$

$$I^{(n)} = \bigcap_{\mathfrak{p} \in \max(I)} (Q_{\subseteq \mathfrak{p}})^n.$$

In particular, if I does not have embedded primes, then $I^{(n)} = Q_1^n \cap \cdots \cap Q_s^n$.

QR Code to My Website

Convex Polyhedra and Monomial Ideals

We can study monomial ideals and powers thereof through the lens of convex geometry: **Definition.** Let $R = k[x_1, \ldots, x_r] = k[\mathbf{x}]$, and let I be a monomial ideal. We define the Newton polyhedron of I, denoted NP(I), as the convex hull of exponent vectors for monomials in I:

 $NP(I) = cvxhull \{ \mathbf{b} \in \mathbb{Z}_{>0}^n : \mathbf{x}^{\mathbf{b}} \in I \}.$

A point (u_1, \ldots, u_r) is in NP(I) if and only if $x_1^{u_1} \cdots x_r^{u_r} \in \overline{I}$. Also, NP(I^n) = n NP(I). We define a similar polyhedron for symbolic powers.

Definition. [Camarneiro et al., 2022] Let I and Q_i be as in Lemma 1. Then, the symbolic polyhedron of I, denoted SP(I), is

$$SP(I) = \bigcap_{\mathfrak{p}\in\max(I)} NP(Q_{\subseteq \mathfrak{p}})$$

In particular, if I has no embedded primes, then $SP(I) = NP(Q_1) \cap \cdots \cap NP(Q_s)$. Similarly, a point (u_1, \ldots, u_r) is in SP(I) if and only if $x_1^{u_1} \cdots x_r^{u_r} \in I^{(n)}$ for some n. Also,

 $SP(I^{(n)}) = n SP(I).$

There is also an interpretation of analytic spread and symbolic analytic spread in this context. **Theorem** (Há, Nguyễn 2021). For a polyhedron Δ , let $mdc(\Delta)$ denote the maximal dimension of a compact facet of Δ . Then $\ell(I) = \text{mdc}(\Delta) + 1$, $s\ell(I) = \text{mdc}(\Delta) + 1$.

Example: I = (xy, xz, yz)

Note that $I = (x, y) \cap (x, z) \cap (y, z)$. For each n

$$I^{(n)} = (x, y)^n \cap (x, z)^n \cap (y$$

Note that $I^2 = (x^2y^2, x^2yz, xy^2z, x^2z^2, xyz^2, y^2z^2)$, and $I^{(2)} = (x^2y^2, x^2z^2, y^2z^2, xyz)$. Since xyz is the only minimal generator of $I^{(2)}$ not in I^2 , $\operatorname{sdef}_I(2) = 1$.

Inductively, we can find an exact formula:

$$\operatorname{sdef}_{I}(n) = \begin{cases} \frac{3}{2}n - 2 & n \equiv 0 \\ \frac{3}{2}n - \frac{3}{2} & n \equiv 1 \end{cases}$$

Below, we see the respective polyhedra for I:

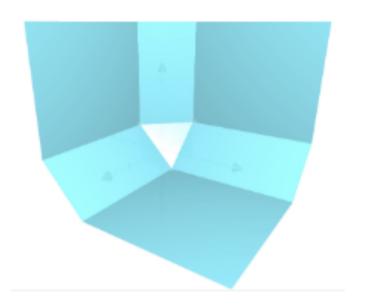


FIGURE 1. NP(xy, yz, xz)

$$NP(I) = \begin{cases} u, v, w \ge 0\\ u+v \ge 2\\ v+w \ge 2\\ u+w \ge 2\\ u+w \ge 2\\ u+v+w \ge 3 \end{cases} \qquad SP(I) = \begin{cases} u, v, w \ge 0\\ u+v \ge 2\\ v+w \ge 2\\ u+w \ge 2\\ u+w \ge 2 \end{cases}$$

Notice that mdc(NP(I)) = 2, corresponding to the triangular face supported on u + v + w = 3. Thus, $\ell(I) = 3$. However, mdc(SP(I)) = 1, so $s\ell(I) = 2$.

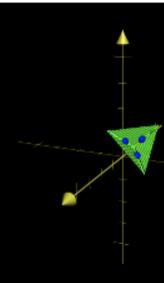
$$,z)^{n}.$$

(mod 2)(mod 2)

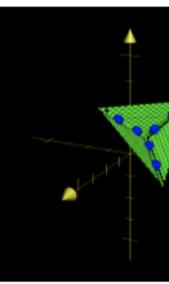
FIGURE 2. SP(xy, yz, xz)

Symbolic Defect Calculation

For an ideal with integrally closed powers and symbolic powers, we can count the "minimal" points of $n \operatorname{SP}(I)$ not in $n \operatorname{NP}(I)$ to calculate symbolic defect. Below, we see an example of this for smaller cases, using the example of I = (xy, xz, yz):



(a) n = 3



(c) n = 5

Example (O. 2023). Let $I = (x^a y, y^b z, z^c x, xyz)$. Then, 1. $\operatorname{sdef}_{I}(n) \sim (\alpha + \beta + \gamma)n$, where $P = (\alpha, \beta, \gamma)$ solves $\begin{cases} \frac{1}{a}u + v = 1\\ \frac{1}{b}v + w = 1\\ \frac{1}{c}w + u = 1\end{cases}$ 2. A quasi-period of sdef $_{I}(n)$ is abc + 1.

Integral Symbolic Defect

Counting minimal points of $n \operatorname{SP}(I)$ not in $n \operatorname{NP}(I)$ does not calculate $\operatorname{sdef}_{I}(n)$ in general, since powers and/or symbolic powers of I may not be integrally closed. Consider instead: **Definition.** Let I be an ideal of a commutative ring R. We define the *integral symbolic defect of* I as

$$\operatorname{isdef}_{I}(n) := \mu\left(\overline{I^{(n)}}/\overline{I^{n}}\right) = \dim_{K}\left(\frac{\overline{I^{(n)}}}{\overline{I^{n}} + \mathfrak{m}\overline{I^{(n)}}}\right).$$

et *I* be a monomial ideal in $R = K[x_{1}, \dots, x_{r}]$ such that $I^{(n)} = (I^{n})^{\operatorname{sat}}$ for all

Theorem (O. 2023). Le $|n \geq 1$ (e.g., when dim(R/I) = 1). Then isdef $_I(n) = O(n^{r-2})$.

nomials

References

B. Oltsik, Symbolic defect of monomial ideals, arXiv.org:2310.12280, 2023. J. Camarneiro, B. Drabkin, D. Fragoso, W. Frendreiss, D. Hoffman, A. Seceleanu, T. Tang, S. Yang, *Convex bodies and asymptotic invariants for powers of monomial ideals*, J. Pure Appl. Algebra 226 (2022), no. 10

B. Drabkin, Symbolic powers in algebra and geometry, PhD thesis, University of Nebraska-Lincoln, 2020. F. Galetto, A. Geramita, Y. Shin, A. Van Tuyl, The symbolic defect of an ideal, J. Pure Appl. Algebra 223 (2019), no. 6, 2709–2731.

H. T. Hà and T. T. Nguyễn, Newton-Okounkov body, Rees algebra, and analytic spread of graded families of monomial ideals, arXiv.org:2111.00681, 2021, Trans. Am. Math. Soc., submitted J. Herzog, T. Hibi, N. Viêt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (1) (2007) 304–322.

DEPARTMENT OF MATHEMATICS

(b) n = 4(d) n = 6

The proof involves reducing to an (r-2)-dimensional polytope, and invoking the theory of Ehrhart poly-