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Background

Definition. Let R be commutative Noetherian, and let I be an ideal of R. The n-th symbolic power of
I , denoted I(n), is

I(n) =
⋂

p∈Ass(I)
InRp ∩R.

Two important properties:

1. In ⊆ I(n) for all n

2. Symbolic powers form a graded family of ideals

The Rees algebra R(I) =
⊕∞

n=0 I
ntn is Noetherian, but the Symbolic Rees algebra Rs(I) =⊕∞

n=0 I
(n)tn may not be.

Assume R is local (resp. graded) with unique maximal (resp. irrelevant) ideal m. The analytic spread
and the symbolic analytic spread of I are

ℓ(I) = dim (R(I)/mR(I)) and sℓ(I) = dim (Rs(I)/mRs(I)) .

Letting µ(M) denote the minimal number of generators of an R-module M . We also obtain that ℓ(I)

and sℓ(I) are one more than the growth rate of the functions, n 7→ µ(In) and n 7→ µ(I(n)), respectively.

Definition (Galetto-Geramita-Shin-Van Tuyl, 2019). The symbolic defect function of an ideal I is the
numerical function

sdefI : Z≥0 → Z≥0, sdefI(n) := µ
(
I(n)/In

)
= dimK

(
I(n)

In +mI(n)

)
.

The symbolic defect acts as a measurement of “closeness” between In and I(n). A result from Drabkin
states the following:

Theorem (Drabkin 2020). Let I ⊆ R be a homogeneous ideal of a Noetherian graded ring with Noethe-
rian symbolic Rees algebra. Then sdefI(n) is eventually quasi-polynomial for n ≫ 0, with quasi-period
lcm(d1, . . . , ds), where d1, . . . , ds are the degrees of the generators of Rs(I) as an R-algebra.

Symbolic Powers and Monomial Ideals

Let R = K[x1, . . . , xr], I a monomial ideal. Some nice results are known for monomial ideals:

1. If r = 2, then In = I(n) for all n.

2. If I is associated to the maximal ideal, then In = I(n) for all n.

3. The symbolic Rees algebra is Noetherian.

With Drabkin’s theorem, we can conclude that sdefI(n) is eventually quasi-polynomial.

We also have a formulation to calculate symbolic powers:

Lemma 1 (Herzog-Hibi-Viêt Trung, 2007). Let I be a monomial ideal in K[x1, . . . , xr] with monomial
primary decomposition, I = Q1 ∩ · · · ∩Qs. Set max(I) to be the set of maximal associated primes, and,
for each p ∈ max(I), let Q⊆p =

⋂
√
Qi⊆p

Qi. Then,

I(n) =
⋂

p∈max(I)

(Q⊆p)
n.

In particular, if I does not have embedded primes, then I(n) = Qn
1 ∩ · · · ∩Qn

s .
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Convex Polyhedra and Monomial Ideals

We can study monomial ideals and powers thereof through the lens of convex geometry:

Definition. Let R = k[x1, . . . , xr] = k[x], and let I be a monomial ideal. We define the Newton
polyhedron of I , denoted NP(I), as the convex hull of exponent vectors for monomials in I :

NP(I) = cvxhull{b ∈ Zn
≥0 : x

b ∈ I}.

A point (u1, . . . , ur) is in NP(I) if and only if xu11 · · · xurr ∈ I . Also, NP(In) = nNP(I).
We define a similar polyhedron for symbolic powers.

Definition. [Camarneiro et al., 2022] Let I and Qi be as in Lemma 1. Then, the symbolic polyhedron
of I , denoted SP(I), is

SP(I) =
⋂

p∈max(I)

NP(Q⊆p).

In particular, if I has no embedded primes, then SP(I) = NP(Q1) ∩ · · · ∩ NP(Qs).

Similarly, a point (u1, . . . , ur) is in SP(I) if and only if xu11 · · · xurr ∈ I(n) for some n. Also,

SP(I(n)) = n SP(I).
There is also an interpretation of analytic spread and symbolic analytic spread in this context.

Theorem (Há, Nguy˜̂en 2021). For a polyhedron ∆, let mdc(∆) denote the maximal dimension of a
compact facet of ∆. Then ℓ(I) = mdc(∆) + 1, sℓ(I) = mdc(∆) + 1.

Example: I = (xy, xz, yz)

Note that I = (x, y) ∩ (x, z) ∩ (y, z). For each n

I(n) = (x, y)n ∩ (x, z)n ∩ (y, z)n.

Note that I2 = (x2y2, x2yz, xy2z, x2z2, xyz2, y2z2), and I(2) = (x2y2, x2z2, y2z2, xyz). Since xyz is

the only minimal generator of I(2) not in I2, sdefI(2) = 1.

Inductively, we can find an exact formula:

sdefI(n) =

{
3
2n− 2 n ≡ 0 (mod 2)
3
2n− 3

2 n ≡ 1 (mod 2)
.

Below, we see the respective polyhedra for I :

NP(I) =



u, v, w ≥ 0

u + v ≥ 2

v + w ≥ 2

u + w ≥ 2

u + v + w ≥ 3

SP(I) =


u, v, w ≥ 0

u + v ≥ 2

v + w ≥ 2

u + w ≥ 2

Notice that mdc(NP(I)) = 2, corresponding to the triangular face supported on u + v + w = 3. Thus,
ℓ(I) = 3. However, mdc(SP(I)) = 1, so sℓ(I) = 2.

Symbolic Defect Calculation

For an ideal with integrally closed powers and symbolic powers, we can count the “minimal” points of
n SP(I) not in nNP(I) to calculate symbolic defect.
Below, we see an example of this for smaller cases, using the example of I = (xy, xz, yz):

Example (O. 2023). Let I = (xay, ybz, zcx, xyz). Then,

1. sdefI(n) ∼ (α + β + γ)n, where P = (α, β, γ) solves


1
au + v = 1
1
bv + w = 1
1
cw + u = 1

.

2. A quasi-period of sdefI(n) is abc + 1.

Integral Symbolic Defect

Counting minimal points of n SP(I) not in nNP(I) does not calculate sdefI(n) in general, since powers
and/or symbolic powers of I may not be integrally closed. Consider instead:

Definition. Let I be an ideal of a commutative ring R. We define the integral symbolic defect of I as

isdefI(n) := µ
(
I(n)/In

)
= dimK

(
I(n)

In +mI(n)

)
.

Theorem (O. 2023). Let I be a monomial ideal in R = K[x1, . . . , xr] such that I(n) = (In)sat for all
n ≥ 1 (e.g., when dim(R/I) = 1). Then isdefI(n) = O(nr−2).

The proof involves reducing to an (r− 2)-dimensional polytope, and invoking the theory of Ehrhart poly-
nomials.
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